AD=A0S1 760 DEFENCE RESEARCH ESTABLISHMENT VALCARTIER (QUEBEC) F/6 20/3
SCATTERING OF ELECTROMAGNETIC BEAMS BY SPHERICAL OBJECTS:(U)
FEB 78 W & TAM: R CORRIVEAU

WCI.ASSIFIED

DREV=-R=4086/78

END

-'II[

,




o

Iz
O

2.5

i 2g

158
2 20
!

L

i< s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-ft




INFORNMAGICN CANADA (

CRDV RAPPORT 4086/78 . DREV REPORT 4086,/78
DOSSIER: 3633A-011 . FILE: 3633A-011
FEVRIER 1978 FEBRUARY 1978

IS REPRODUCTION ' |
Ngvspm;\.f.ns,swﬁ CF UNCLASSIFIED  , /77 /

LRSI FEYTRS SOR T

e DA 051760

SCATTERING OF ELECTROMAGNETIC BEAMS

AR P AR

BY SPHERICAL OBJECTS

MBS AR TR R N

W.G. Tam D D C

R. Corriveau

s RS

Centre de Recherches pour la Défense

Defence Research Establishment

Valcartier, Québec

BUREAU - RECHERCHE ET DEVELOPPEMENT RESEARCH AND DEVELOPMENT BRANCH
MINISTERE DE LA DEFENSE NATIONALE L DEPARTMENT OF NATIONAL DEFENCE
CANADA NON CLASSIFIE CANADA

E—— ;m FILE COPY




CRDV R-4086/78 UNCLASSIFIED

DOSSIER: 3633A-011

FILE: 3633A-011

SCATTERING OF ELECTROMAGNETIC BEAMS

BY SPHERICAL OBJECTS -

P
o e e i R W 3 ]

2R ____,_,_']?Z.,...;-_.A).,.__ o

!

CENTRE DE RECHERCHES POUR LA DEFENSE
DEFENCE RESEARCH ESTABLISHMENTV/
VALCARTIER

Tel: (418) 844-4271

Québec, Canada @b’/mn {
HOH 942 =




4
:
|
i
i
|
|
!

UNCLASSIFIED
i

RESUME

La diffusion d'un faisceau gaussien TEMpg par un objet sphérique
est traitée de facon exacte en termes de fonctions d'onde vectorielles
sans aucune restriction de la dimension ou de la position du diffuseur.
Les expressions obtenues pour la puissance absorbée et diffusée sont
présentées sous forme de combinaisons linéaires des coefficients de Mie
et peuvent €tre dés lors évaluées numériquement. Le probléme correspon-

dant a4 la diffusion d'un faisceau produit par un laser fonctionnant

*
dans le mode TEMpj est aussi résolu. (NC)

ABSTRACT

\

\)

The scattering of a Gaussian beam TEMgg wave by a spherical
object is treated exactly in terms of the vector wave functions without
any restriction on the size or the position of the scatterer. Expressions
obtained for the powers absorbed and scattered are given as linear com-
binations of the well-known Mie coefficients and can be readily applied
to numerical computation. The corresponding problem for the scattering
of a beam produced by a laser operating in the_TEM;i mode is also

solved. (U)
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1.0 INTRODUCTION

In infrared system design and optical countermeasures it is
important to have available quantitative information on the extinction
properties of aerosols, both of military and non-military origin, in the
atmosphere. To obtain the extinction coefficient and the scattering
phase function, one of the most basic physical quantities to be measured
is the aerosol particle size. For this purpose light scattering from
laser beam is a technique commonly used. The standard theoretical tool ]
in deducing the size of a spherical scatterer from the experimental
result is the Mie theory developed at the turn of the present century.
To ensure a sufficiently strong scattered signal, the incident electro-
magnetic field is often in the form of a collimated laser beam, whose
characteristic width may be comparable with the size of the scatterer.
In such cases the assumption in the Mie theory [1] that the incident
field is an infinite plane wave is evidently not valid. The scattering
of a Gaussian beam has been considered by Morita et al [2] but they have

assumed that the scatterer was small compared to the beam waist. A more

satisfactory approach to the problem has been given by Tsai and

Pogorzelski [3]. Using the cylindrical vector solutions of the wave
equation, they studied the scattering of a Gaussian beam from a laser
operating in the fundamental mode by a spherical particle of arbitrary
size. The particle, however, is assumed to be on the beam axis. In

many physical applications - aerosol particle size measurement, for

example - it is important to know the effects of the variation in intensity
of the laser beam in a given sampling volume to properly design the
experiment as well as to understand the measurements. Because of the lack
of a more general theory, the interpretation of the results of a recent

experiment [4] has to be limited to scatterers on the beam axis.
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In this report we present theoretical results for the scat-
tering of a Gaussian beam produced by a laser operating in the fundamental
TEMpy mode. Some of the preliminary results have been presented in Ref. 5.
The spherical scatterer is arbitrarily situated and its size is also
arbitrary. For the measurement of aerosol particle size by intracavity
scattering [6,7] the use of a beam in the TEMSI mode has been suggested.
The power scattered and absorbed from such a beam by a spherical particle
will also be given. This work was performed at DREV during 1976 under
PCN 33A11 (formerly PCN 15B34), Aerosols Studies.

2.0 EXPANSION OF THE ELECTRIC FIELD OF A GAUSSIAN TEM;, BEAM

Before discussing the more general theory we briefly sketch the
results of Ref. 3. It is assumed that the intensity of the electromagnetic

beam I(z=-zo) measured at a plane z=-2, normal to the beam axis is given by

o 2
I(z=-zo) ) (1)
and the corresponding electric field is
pl 2
E(ze-zg) = 8o T /" 2)

Since, as pointed out by Carter [8], (2) does not satisfy the Helmholtz
equation except when r is small compared to Wy it gives only the near
axis behavior of E in the plane z=-2,. In fact, Tsai and Pogorzelski [3]
have shown that the electric field satisfying (2) near the beam axis

can be derived from a Hertz potential:

“ o
N w A2y 2 :
g = % e %t sing —2- Ezf o Mg /4 J, () IN(Z*20) 524, (3)
0
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with E= - .g.t.?; xT (4)

In (3) the cylindrical coordinates (r, ¢, z) refer to a frame with its
origin on the beam axis, h = k VI-(A/k)2 and k? = pew? + juow, where

u, € and o are respectively the permittivity, permeability and con-
ductivity of the medium of propagation. Except that we have chosen a
beam wave propagating in the positive z-direction, the symbols used here
are the same as in Ref. 3. With (3) the magnetic field can also be

written down from
H=VxVxT (5)

In fact, the electric field E given by (3) and (4) can be written as a
linear combination of the first-order cylindrical wave eigenfunctions

>
9
mypy [

L ©
2v00 2 s
e-)x Wo /4 .I; elh(Z*'zo) AZd)‘ (6)
0 ol

4-2%
n
=
o

i

To solve the scattering problem with the spherical particle on the beam
axis Tsai and Pogorzelski [3] established the following relationship

> : : :
between M1 and the spherical wave eigenfunctions

jhz » - 20+1 (e-1)! .2-1 .dP 1(cosa) > Pgl(cosa) >
& N Zy.=1 $eed) e T de T Yond” T eime Yent
(7)

The scattered fields were then determined through the continuity condi-

tions on the surface of the scatterer.
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For the general problem where the scatterer is not restricted
to the beam axis, we choose the center of the spherical particle as the
origin 0' of another coordinate system obtained from the old system by
translation. Relative to the new system, the origin of the old system
is situated at O(rl, ¢1, zl) (Fig. 1). To rewrite the Hertz potential

of (3) in the new coordinates, the addition theorem for Bessel functions:

eI J_ ()= E 3 0r) 3, (') ol RIO®  ~fmb, (8)

n=-®

can be used and

JS(Xrl) ejs(¢'-¢1) [1]s+1(xr') ej¢' + Js_l(kr‘) e-j¢i] A2dx %)

S=-®

It is more convenient for our purpose to combine the cylindrical vector

eigenfunction of even and odd parities so that

-> e . e e >
Bex” Mosn T ) Bannr Mar® Poer ¢ 3 By (10)
The electric field E becomes
5“’0" jut [ -22w.2/4 jh(z'+z,+z.)
Bl f e i 1*%0) «x
0
- js¢, [» >
» 2
JSO‘TI) e 1 [ms+1,)« + ms_]’x] Aeda an

§=-®
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Unlike the electric field referring to an on-beam axis system, the
field E now contains cylindrical vector waves of all orders.

To express (11) in terms of the spherical waves Ezs’ ﬁis
defined in a way similar to (10) it is necessary to generalize (7). Tt

can be verified that for any integer s (Appendix A)

s
jhz=> = § : 22+1 (2-s)! .&-s+1 dPg” (cosa) =
e Wy = j A = m

2(2+1) (a+s)! s
=1
s s >
+ .S—i_;\—d— Pﬂ, (COSQ) nls] (12)

where P&:S are the Legendre polynomials.

Substituting (12) into (11) we obtain

© o6
-> > -
E = z ; E : Po(2ys) m, * D.(2,s) n
Lt Lt A 2 B %s (13)
where
(D, (2,s) jw 4 -jut
o P S 2 .
‘. - g s dne ™ Vg 18 SRR AZg) 45 o
‘Ds(z,s) 0
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and

REESL 50y sy

T L(e+l) (Res)!

B(%,s;1) g (15)

2 (cosa
2 s+1
sina

In an on-beam axis cdordinate system, E is a linear combination of the

- v g s
spherical waves moy and n,, only.

3.0 SCATTERING OF A GAUSSIAN TEM;, BEAM

-
To find the scattered fields Er, B produced by the spherical
particle at 0', the continuity conditions on the surface of rhe scatterer

(R = a) mav be used

ERX(E+§T)=3 x Et (1t}

Uy % @+ 0 =0, x 0t (17)

>t g s St > s 3
where Et, H™ arc induced fields inside the sphere. For E' z-d Et we write

oo -]
FT r (3) _» 3
E = &4 &= D a(4,8) af om0+ Dp(2,s) b n. (18)
and
E‘” = t > (1) t > (1)
e >

9

gt Z Dy(2,8) a gs Mg -+ Dg(2,s) b o5 Nge (19)
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The spherical waves ﬁn ( ), nQS(”, 509( ) and Kpg(l) are obtained froem
the corresponding even and odd parity waves given in Ref. 7. The coefri-
- r t . -
clents a . , b’ , @ . bt . can now be determined from (16) and (17..
2s 2s Ls s

It can be shown that the cocfficients are independent of s such that

i r S .
2 0s T @ st Bige =B gs! i
- RREREREEL D
L ge =8 gens Pl 7B es!' :
Furthermore, arps, erS are just the well-known Mie coefficients given bv
(Appendix B)
s ) ! k , '
Jole1) [pig(e)] - do(e) [pqip(oq)] (22)
ar O ) WL m i 0
Ls Je(ey) [oh™27 ()] - h%g” (p)[pyiy(eq)]
1 1
bt = . 32 leyieley)] - (k'/K)%5, (0 [pi, ()] (23)

B D) eyig o] - kK20 1ohE) (o)

where p = ka, P = k'a and k' is the propagation constant for the scatterer.
Therefore, no scattering coefficient other than the Mie coefficicnts in (22"
and (23) are involved in E'. Dropping the unnecessary subscripts s in

r
a

T 3
and b we can write
s s

od ® ©

ar T +(3) T >(3)
E" = E : a E : D, (£,5) mye * by Z-JDB(Q,S) nlsj (24)

2=l S= -0
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The magnetic fields H and H® are given by

@ (-]
= X k E -> ->
I i SZ=-¢, Ditia) my, % Dgltas) My (25)
and
T k T »(3) ZE:
D S (3 | pr +(3)
I8 2=1 al S=o DA(l’s) nzs ¥ bﬂ DB(l,s) mzs (26)

= -0

With the expressions (24) and (26) for the scattered fields
we can write down at once a generalized expression for the power

scattered in a given direction.

The rate Ws at which energy is being scattered by the particle
can now be obtained by integrating the Poynting vector corresponding to
ET and H* over the surface of a large sphere of radius R centered at 0'.

In fact,

T 27

L 2 T T T ..xk
Ws =i ] R (Ee H¢ - E He ) sinfdéed¢
0 JO
_2m XN N () (a+s)! |a¥ D, (2,5) |2
kw § : 20+ 1 (2-s)! 2
=1 s=-»

+|by Dy(2,9) Izz (27)

e i
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In deriving (27), we used the following relations

T 2 L )
[T, -2 aDi,) smssnes =0 n
0 0
" A s Sy
/ f (154) 2's'e 259 nl's'¢) sin6déd¢ = 0 (29)
0 0
and
" A () (3) _(3)*
/ f ( 2s6 l's ¢ = m15¢ i's '9) sin8d8d¢
0 0
= 42 (2+s)! . (1 1
~ 6z,z'cs,s' 7%TT (2+1) (g+:%| h( )( J = p dp [oh( ¥ (p)]
(30)

In a similar manner, the rate Wt at which energy is being scattered and

absorbed by the particle can be found by evaluating the integral

We= o //R251n0(E Hr+EH - ¢:* E )d6d¢ (31)

to give

2m 2+1)  (2+s)!
"t . Z Z ﬁr—l— (T.E% ga:IDAU"S)IZ

S=-x

+ bIIDB(R.,s) lz§ (32)




For the special case when the beam axis passes through the
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center of the spherical scatterer Ty = 0, (14) becomes

D, (2,9) 3 229?
Dg(2,s)
(65,1 +Gs,-1) %

i 2.2 5
= Jmt/ . A %y /4 e;h(zl+zo)
0

A(2,s;1)
A2da
B(&,s;7)

——

(33)

After some straightforward algebraic manipulation we arrive at the following

results for on-beam axis scattering

and

where

and

W =2
dp@) =
dB(l) =

©

2=

2=

WO“

8

u
w
w8

8

e [l w1
1

2(22+1)

o

[

- T+D)]2 [%ildA(z;iZ + b:ldstz)[;]

32 2 . dpl! (COSG! 2
" A W /4 eJh(zl+zo) s Acda

A2 2 1
A 9 /4 ejh(zl+zo) Py (cosa) A2d)

sina

(34)

(35)

(36)

(37)
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In the infinite plane wave limit corresponding to Wy e both dA(z) and

dB(Q) approach to a common value £(%2+1)/2 and the well-known results

W= (2z+1)(ia:|2 + Ibilz) (38)

s kw 1

and
I b T
W = E Re z_: (22+ 1) (%2 + b;) (39)
2=1
are obtained.

*
4.0 EXPANSION OF THE ELECTRIC FIELD OF A TEMp; BEAM

The first-order oscillation mode in a laser cavity with cylin-
*
drical symmetry about the beam axis is often referred to as the TEMp;

mode. Its intensity distribution in a plane normal to the beam axis is

_9p2 2
I(z=zy) « r2e i (40)
and the electric field near the beam axis is
v 2
E'(z=-z0) = iix r e T/ (41)

In contradistinction to the fundamental mode discussed above, such a field
cannot be derived from a single Hertz potential. Two complementary Hert:z
potentials ﬁ(l) and ﬁ(z) of the electric and magnetic types [9] are

required and the corresponding partial fields are given by

E(l) = 3 X .V’ X ﬁ(l), ﬁ(l) =€ %—t— V X ﬁ(l) (42)




T
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S

and

ORI I (O NS P TS < (43)

From the general theory of vector potentials, it is sufficient to consider
ﬁ(l), 3(2) of the form

Wi, 19 d (44)

An immediate consequence of using a Hertz potential of the electric type
is that E is not completely transverse. However, the longitudinal compo-
nent of E does not contribute to I(z=-zo) and it will be seen that the
field E is dominated by its transverse component near the beam axis.

The Hertz potentials ¥, x can be expressed as

- 2 Ll 2
v o= e.‘Jwt g_ CQSZQ e £ /wo f(z) (45)
b i 2
X = E%- e %t y25in24 7T Al g(z) (46)

P

: The functions £f(z), g(z) are chosen such that y and x satisfy the
»% scalar wave equation as well as the boundary conditions %f- T Wl 1s

g(z=-zo) = 1. As in the case of the fundamental mode, ¥ and x 0

can be expressed in terms of the solutions of the scalar wave equation ‘
in cylindrical coordinates. Let us define the functions qz(x), qO(A)

and q_z(X) to be

ag, (\) = f r2 e T /Mg’ Jg, () rdr (47)
1 1
0
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where i=1, 2, 3 and sl=2, 52=0, 53=-2. Using the boundary conditions

of ¢ and x and the Fourier-Bessel theorem, we can obtain

i=1

3 )
ol . Q. (}) :
V= Z e JUtrIS;¢ %L / SIh Js; O) N (2420) 14, (48)
0

and

3

~jwt+j -1)76 j ‘:
Z o IEEHTE L—)—‘L[ as; (M) Jg, () eIP(2*20) 45
i= |

(49)
where 61=63=1, 62=2.
The partial fields E(l) and E(z) are then given by
3 o
1 “uk : 7 ;
B L et 3 Lisie & f as; () M) >
i=1 0 '
3Js. (Ar) s 2
: i A
j — a, - % Jg, () 3¢ S ) Gz AdA  (50)
(@ --e"“"}: SR GV 5] / as; () M(27g)
i=1
]S aJ (Ar) ™
T J (Ar) u + —ai——-— u’ AdA (51)
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The partial field E(z) is transverse but ﬁ(l) has a longitudinal component.
It is clear from (50) that near the beam axis (r-0) the transverse compo-
nent dominates. Both E(I) and E(Z) can now be expressed in terms of the

cylindrical eigenfunctions so that

3 o
1) | »(2 -j 63 j
B2, 2@ [ dut > 4 / ag, (1) o31(24%g)
i=1 0
R e AdA
h Msia Jmsj}\ . (52)

*
5.0 SCATTERING OF A TEMg; BEAM

The electric field E in (52) is expressed in terms of the
on-beam axis coordinates. To find the fields scattered by an arbitrarily
situated sphere we again introduce an off-axis system with coordinates
(r', ¢', z') as before. By applying the addition theorem for Bessel

functions, the field E in the off-axis system becomes

5 3 © ©
-jwt Syt z ’
e . jhz lk = (.1
E == E E / E(s,i,A) e [h Rerss,A (-1) ms+si’)\])\d)\
i=1 0

s=-®

(53)

where

E(s,i,\) = Gixqsio‘) eJh(z1+20) 3 (rp) o I3 (54)

and the coordinate variables in Esx' n_. in (53) are (r', ¢', z').

sA
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= . -> ->
To transform the cylindrical wave functions meys nsx to the

. ; + 7
spherical functions, we need an identity for Ny similar to that for

Esk given in (12). It can be shown that (Appendix A)

X s
eth - § : 20+ 1 (2-s)! jl—s+1A [dP g (cosa) .

SA L(a+ 1) (2+s)! da Ls
=1
S >
e Psl(cosa) nzs] (55)
and hence
£« E Z [J(z,s) By + K(2,9) ;ls] (56)
2=1 s=-w
where
e-jmt 3 3 ‘x -
J(2,s) = 'y Z / E(s-s5,1i,1) []h—— B(R.,s;,\)-(-l)1 A(L,S;A)] dx
i=1 J0

(57)

and K(%,s) is obtained from J(%,s) by interchanging A(2,s;)\) with
B(L,s;A). Because E in (56) has exactly the same form as (13), the

scattered fields can be written down at once

L Z Z [arz 3,9 2C)+ T, K(2,5) 3(335] (58)
=] s=-
and & -
r_ k > ->
L= S= e
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The rates at which energy is being scattered away from the beam are

2 c < 2(o+1 (R+s)! T 2 T 2
" f:TZ Z 22,+1) (g_:)! ;Ia L J(,s)| + |b . K(L,s) | f
=1

S=-o
(60)
and wt, the rate at which energy is scattered and absorbed, is
_2n z : 2(L+1) (R+s)! T 2 T 2
"t TR K Z 20+1 (2-s)! 2 glJ(Q"s)l +b EIK(zos)l
=] s=-x
(61)

o brl in (58) - (61) are again the Mie coefficients

given in (22) and (23).

e T
The coefficients a

6.0 CONCLUSIGONS

The results of Tsai and Pogorzelski [3] derived for a Gaussian
beam corresponding to the fundamental mode TEMgg have been generalized.
In the first place, the incident fields are expressed in terms of the
cylindrical and spherical vector wave eigenfunctions respectively in
an off-beam-axis coordinate system. This enables us to obtain the
scattered fields as well as the powers scattered and absorbed from the
beam by an arbitrarily situated spherical object. We have shown that
although the incident and the scattered fields in an off-beam-axis
system are linear combinations of spherical wave functions of all

" »> > " 5 5
orders (i.e. mgs> N with s equal to any integer), the scattering

s
coefficients are independent of s and are just the Mie coefficients.
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Parallel results are also obtained for ‘the cylindrical symmetric mode
TEM;I. These theoretical results together with a standard program for
calculating Mie coefficients [10] can be readily applied to numerical
computations for the scattering of beam waves without imposing
restrictions on the size or position of the scatterer. With the more
general theory, aerosol particle sizing can be more efficiently carried

out using the laser scattering technique.
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APPENDIX A

In this appendix we sketch the proofs of the two formulas:

= fi 2£+1 (£-s)! j£"5+lx [éPZ(cosa) > %

sA =1 T+1) [T+s)! do Ls
s P, (cosa) KLS] (A-1)
b |
and
jhz > ._ > 2£+1 (£-s)! .L-s+l dPZ(cosa) >
T i El LD Gt ! Y T e s 1

+ ——si:a Pz (cosa) Ezs] : (A-2)

We begin by proving (A-2) from which (A-1) can readily be obtained.

Let us denote the vector e'Js¢ eth ;sk by N and its component along
Ek by'NR. Then from eq. (2.14) we have

jhz [ a5.00
NR - .e_k__ (h ""S'i'(—ﬂ sing - ja2 Js(kr) cosb (A-3)

Using the identity

J () JJhz _ £§0 7575 2241) %}3-? P} (cosa) Py (cose) j,(kR)
(A-4)

and recurrence relations of JS(Xr), jz(kR), pi(cosa) and PZ(cose),
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we can show after rather lengthy but elementary manipulations that

_ %~ L-s+1 28+1  (£-s)!. dPp(cosa) .1
=& I T e Mesk. (3-5)

L}
Hence N defined by

ﬁ' SE i j£-5+1 20+1 (£-s)! X dPZ(cosa) *

3 - LD st 2s (A-6)
£=1 da
is a vector which has no component along GR' In a similar manner, the
1
3¢ component of N can be proved to be given by

e~ Losal  2lel 0 @l-€)!  As s
No = ég% - TA+D) (Trs)T  sina P (6052 Mpgy (A=

From the fact that ﬁts contains no u component, it follows that E |

R

et e o~ .L-s+1 2841 (£-s)! dPZ(cosa) >
s T T T [—m——“zs

S

n2
sino

Pz(cosu) aﬂs] (A-8)

'+ -
may only have a non-zero component along Ug - To complete "‘the proof
1 "
that N is indeed a null vector, we note that since N must be divergence
free (as ﬁ, KZS’ als are all divergence free) it can only be expressed as

. . . ap -> ¢
a linear combination of m!_S and nls i.e.
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v > > -»>
N = g) ap My +Bp My (A-9)

In (A-9) only ﬁts (0<€<=) has ﬁh component and hence 8£=0 following from
the linear independence of the vectors ;ls' Similarly, since ﬁzs has

e
a components while N does not, the coefficients ap must also vanish. ]

This proves (A-2) and (A-1) can be obtained at once from (A-2) and the

fact

jhz » _ . jhz >
vV x (e nsl) = ke m, (A-10)
-»> -+
v X Kzs = k Ecs.
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]
]
1

A i i

APPENDIX B

Let

St s i

> -

> > = > ] ﬁ
Up X By ® Whg ¢ g B = Fae

From the boundary conditions (16, 17) on the spherical surface R = a,

we obtain the following equations:

+

> r =(3) t (1)
‘:" % I)A(L’s) <M£s aps Mes - %25 Mls)

R=a

x *(3) ¢ >(1) o,
3% DB(L’S) (le 5 bis Nps - bgs Npg ) Pup 0 (B-1)
and
T (3) k' t =2(1) |
% § D\ (£,5) (ﬁls ¥ ok ﬁts K s le,) R=a |
> T (3) k' t (1) b |
i DB(L’S) (?ls * by ﬁZs 5 B Mg ) Reg”" (B-2) 1
|
|
If we write §
> < > - f
Mps = Mpsglp * Mosely o k8o
and His = ntsngh + nzseﬁe+ n£s¢ﬁ¢ (B-4) é
ﬁ
|
> > -+ |
then Mls =0 mzwue + mzseu¢ (B-5) 1
|
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N» o - >
2s = T Mes¢¥e * MeseYs (B-6)
It can be seen at once that
e -> > >
Mps + Merst = Mps + Nprgo (B-7)
- > > >
and mzs . mz's' = Mts . Mz's' (B-8)
Furthermore, using the orthogonal properties of E&s and ;Zs’ one can
prove that
200 T o L*
j szs . Np,g, sin6deds = 0 (B-9)
0 v0
2 m o L
j‘ szs . My, , sinedede
0 0
2m T . A
= f d¢ jo‘ Sinede (Eots . EO['S' * ;n»e‘es o l‘;e‘e's')
0
= 4n  (L+s)! 2 L
= S pi8g s (148 3 T WD) ‘zl(kk)' (B-10)
and
2w w *
f d¢f smedeﬁzs ; ﬁl;'s'
0 0
=5, 506 (1+8) o &) | L2 ke, amy]]t 1)
Bk’ 8,8" 20+1 -s)! kR 2R £
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In eqs (B-10) and (B-11)

; o (1) (3) {-* (1) *(3)}
since the two sets of vectors {Mts’ Mls’ Mls } and le, le, le
have respectively the same angular dependence. Relations similar to
eqs (B-9) - (B-11) can readily be written down for any two of the six

vectors. From these relations and eqs (B-1) and (B-2), we obtain that

je(ka) = ap h{D (ka) - af jL(k'a) = O (B-12)
[032()1" + ap loniV (0)]" - ap [p,52(o]" = 0 (B-13)
J2(e) + by hy(e) - 1= bp_ j&(p)) = 0 (B-14)
p5e)1" + b%, (ohP 01" - K-y, [oy3Le1" = 0 (B-15)

where p = ka, Py = Kta

g T T t t 4
It is clear that the unknowns apgs bls’ ap and bls in the above
equations are independent of the values of s. Furthermore, for any

arbitrary integers

320o)) [0 - 32() [032o))]’
a . -

0 0 (B-16)
B a6 iY@ - h ) [0,3L06,)]
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LY [0,3L0] - (/K% jLey) [piL(e)]’ i

5 T 2 (1) [ (B’17)
() [py3Le)] - (K'/K)" jL(o)) [phy (o) ]

bY = -
Ls [§))
hg

which are just the Mie scattering coefficients.







